English
فصلنامه میکروبیولوژی کاربردی در صنایع غذایی
مشاهده جزئیات مقاله
دانلود فایل مقاله :
( 64 بازدید ) ( 11 دانلود )
اطلاعات انتشار : دوره 7 - شماره 4
نوع مقاله : مقالة‌ تحقيقي‌ (پژوهشي‌)
محورهای مقاله : پژوهشی
عنوان مقاله : بررسی اثر ضدباکتریایی نانوکامپوزیت اکسید آلومینیوم-اکسید تیتانیوم عاملدار شده با کیتوزان در شرایط آزمایشگاهی
خلاصه مقاله : انوکامپوزیت‌ها حاوی ترکیباتی هستند که خواص آنتی‌بیوتیکی مفیدی را نشان می‌دهد. هدف از این مطالعه بررسی اثرات ضدباکتریایی و ضدقارچی نانوکامپوزیت اکسید آلومینیوم-اکسیدتیتانیوم عاملدار شده با کیتوزان بر روی میکروارگانیسم‌های انتخابی می‌باشد. در این مطالعه پس از تهیه‌ی نانوکامپوزیت اکسید آلومینیوم-اکسید تیتانیوم-کیتوزان به روش بیوسنتز خارج‌سلولی، خاصیت ضدباکتریایی آنها با تعیین حداقل غلظت بازدارندگی،حداقل غلظت کشندگی و سنجش زمان مرگ باکتری‌ها با روش کلاسیک تهیه رقت‌های متوالی کمیته ملی استاندارد های آزمایشگاهی تعیین و گزارش شد.نتایج به‌دست آمده نشان داد که نانوکامپوزیت مذکور در بیشترین غلظت 10 و 20 µg/ml برای گروهاکسیدآلومینیومفعالیت ضدباکتریایی از خود نشان داد. درحالی‌که، در غلظت های (µg/ml 2/5-5)  درنانوکامپوزیت اکسیدآلومینیوم-اکسیدتیتانیوم-کیتوزانو نانوکامپوزیت اکسیدآلومینیوم-اکسیدتیتانیومفعالیت ضدباکتریایی قوی علیه پاتوژن‌هانشان دادند.همچنین، نشان داد که بیشترین فعالیت ضدباکتریایی نانوکامپوزیت اکسیدآلومینیوم-اکسیدتیتانیوم-کیتوزانو نانوکامپوزیت اکسیدآلومینیوم-اکسیدتیتانیوماز h6 تا 24 می‌باشد. با این‌حال، اکسیدآلومینیومدر تمام مطالعه فعالیت ضدباکتری کمتری در مقایسه با اکسیدآلومینیوم-اکسیدتیتانیوم و اکسیدآلومینیوم-اکسیدتیتانیوم-کیتوزان نشان داد. همچنین، نتایج مطالعه نشان داد که نانوکامپوزیت تهیه شده هیچگونه فعالیت ضدقارچی ندارد.نانوکامپوزیت اکسیدآلومینیوم-اکسیدتیتانیوم-کیتوزان اثر ضد میکروبی روی باکتری‌های مورد مطالعه دارند.
کلمات کلیدی : باکتری‌های بیماری‌زا، کانی‌های معدنی، پلیمرهای قابل تجزیه، حداقل غلظت بازدارندگی، حداقل غلظت کشندگی
منابع : Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal. 2020 Sep 5; 138:109984. Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal. 2020 Sep 5; 138:109984. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research. 2008 Nov 1; 42(18):4591-602. Liang WJ, Liu HY, Duan GC, Zhao YX, Chen SY, Yang HY, Xi YL. Emergence and mechanism of carbapenem-resistant Escherichia coli in Henan, China, 2014. Journal of infection and public health. 2018 May 1; 11(3):347-51. Kim H, Jeon D, Oh S, Nam K, Son S, Gye MC, Shin I. Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. Environmental research. 2019 Aug 1; 175:117-23. Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells. 2020 Feb;9(2):306. Liu X, Lee PY, Ho CM, Lui VH, Chen Y, Che CM, Tam PH, Wong KY. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010. Lora AJ, Herrick JA, Recht B, Murphy-Aguilu I. Diagnosis and Management of Wound Infections. InCritical Limb Ischemia 2017 (pp. 517-530). Springer, Cham. Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water research. 2020 Feb 1; 169:115229. Masri A, Anwar A, Khan NA, Siddiqui R. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics. 2019 Dec; 8(4):260. McCarty SM, Percival SL. Proteases and delayed wound healing. Advances in wound care. 2013 Oct 1; 2(8):438-47. Kasem KK, Dahn M. Photodissociation of water using colloidal nanoparticles of doped titanium (IV) oxide semiconductors for hydrogen production. Current Science. 2010 Oct 25:1068-73. Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh DH, Venkatasubbu GD. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science. 2019 Jun 15; 479:1169-77. Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology and Environmental Health, Part A. 2017 Dec 17; 80(23-24):1276-89. Sadeghi Seyed A., Asareh M., Tavakoli M. Oak gall wasps. Research Institute of Forests and Rangelands. 1388, 1: 1-197. (In Persian). Sankar R, Dhivya R, Shivashangari KS, Ravikumar V. Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats. Journal of Materials Science: Materials in Medicine. 2014 Jul 1; 25(7):1701-8. Santos T, Boto C, Saraiva CM, Bernardino L, Ferreira L. Nanomedicine approaches to modulate neural stem cells in brain repair. Trends in biotechnology. 2016 Jun 1; 34(6):437-9. Sanwal R, Chaudhary AK. Wound healing and antimicrobial potential of Carissa spinarum Linn. in albino mice. Journal of Ethnopharmacology. 2011 Jun 1; 135(3):792-6. Shan Y, Xu C, Wang M, Zhu Z, Wu FG, Shi Z, Cui Q, Arumugam GM. Bilinear Staphylococcus aureus detection based on suspension immunoassay. Talanta. 2019 Jan 15; 192:154-9. Sasidharan S, Nilawatyi R, Xavier R, Latha LY, Amala R. Wound healing potential of Elaeis guineensis Jacq leaves in an infected albino rat model. Molecules. 2010 May; 15(5):3186-99. Shannon BA, McCormick JK, Schlievert PM. Toxins and superantigens of group A streptococci. Microbiology spectrum. 2019 Feb 8; 7(1):7-1. Performance Standards for AntimicrobialSusceptibility Testing; Twenty- FifthInformational Supplement (M100-S25). 2015; 35,146-176. Rahman MM, Richardson A, Sofian-Azirun M. Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. African Journal of Microbiology Research. 2010 Sep 18; 4(18):1872-8. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004 Jul 1; 275(1):177-82. Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann WP, Rogelj S. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomaterialia. 2010 Jul 1; 6(7):2562-71. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem: Chemistry Enabling Drug Discovery. 2007 Jan 15; 2(1):129-36. Theoret C. Physiology of wound healing. Equine wound management. 2016 Nov 28:1-3. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020 Aug; 12(8):735. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters. 2015 Jul; 7(3):219-42. Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010 Oct 1; 6(5):681-8. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Hoek AV, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial EL, Conway EM. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2012 Apr 1; 8(3):328-36. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem: Chemistry Enabling Drug Discovery. 2007 Jan 15; 2(1):129-36. Theoret C. Physiology of wound healing. Equine wound management. 2016 Nov 28:1-3. Traub WH, Schwarze I, Bauer D. Nosocomial outbreak of cross-infection due to multiple-antibiotic-resistant Klebsiella pneumoniae: Characterization of the strain and antibiotic susceptibility studies. Chemotherapy. 2000; 46(1):1-4. UDKHIYATI M, ROSIATI NM, SILVIANTI F. THE INFLUENCE OF CHITOSAN TOWARDS ANTIBACTERIAL PROPERTIES IN NATURAL LEATHER. Revista de Pielărie Încălţăminte. 2020; 20:4. Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann WP, Rogelj S. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomaterialia. 2010 Jul 1; 6(7):2562-71. Wu G, Ma X, Fan L, Gao Y, Deng H, Wang Y. Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Materials & Design. 2020 Jan 5; 185:108265.


نویسندگان مقاله :
نویسندهترتیب نویسندهدانشگاه / سازمان/ موسسهدانشگاه / سازمان/ موسسه ( لاتین )سمتپست الکترونیکیمدرک تحصیلی
آروین رحمان‌پور 1     
محمدرضا فرهپور
(نویسنده مسئول)
2     
رضا شاپوری 3     
سعید جعفری‌راد 4     
پرستو رحیمی 5     
دسترسی سریع

کلیه حقوق این وب سایت برای فصلنامه میکروبیولوژی کاربردی در صنایع غذایی محفوظ می باشد .